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We consider a long-wave evolution equation that governs a draining film on a heated 
plate and hence is capable of describing both surface-wave and thermocapillary 
instabilities. When the flow and heat transfer rates are moderate, we show, via 
weakly nonlinear analysis of a truncated system and numerical simulation of the full 
nonlinear evolution equation, that coupled temporal instabilities can create surface 
deformations that lead to an array of rivulets aligned with the flow. This work thus 
demonstrates a mechanism of rivulet formation based solely on instability phenomena. 

1. Introduction 
A viscous liquid layer on a horizontal heated plane is susceptible to thermocapil- 

lary instabilities, caused by surface-tension variations at the liquid/gas interface. As 
summarized by Goussis & Kelly (1990), there are two different types of thermocap- 
illary instabilities. One type, examined first by Pearson (1958), exists when thermal 
convection is significant, and occurs for disturbances wavelengths comparable to 
the layer thickness. This type does not require deformation of the interface. The 
other type, identified by Scriven & Sterling (1964), is always accompanied by surface 
deformations. Mean surface tension cuts off the short waves. For sufficiently thin 
layers, the effects of thermal convection are small, so that there is present only the 
long-wave instability associated with the free-surface deformation. Goussis & Kelly 
(1990) studied these two different types of instability in the presence of stabilizing 
hydrostatic pressures, and identified parametric regions where these can exist. 

When the plane is tilted, the liquid drains downward due to gravity. If the layer 
thickness and the inclination angle are large enough to overcome the hydrostatic 
stabilization, another mode of instability is present, which occurs for isothermal 
layers and gives rise to formation of surface waves propagating downstream. This 
surface-wave instability, identified by Yih (1955, 1963) and Benjamin (1957), has 
been studied intensively for many years, as summarized by Lin (1983) and Lin & 
Wang (1985). Again, for sufficiently thin layers, the instability occurs for long waves, 
because short waves are suppressed by capillary forces. 

Film flows coupling the aforementioned instabilities (falling film on a heated incline) 
have been studied often since the work of Lin (1975). Kelly, Davis & Goussis (1986) 
performed a linear stability analysis, and found a 'stability window' below and above 
which the flow becomes unstable due to thermocapillarity and mean flow, respectively. 
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This window exists due to the stabilizing effects of hydrostatic pressure. Goussis & 
Kelly (1991) extended the analysis, and identified the surface-wave and the two types 
of thermocapillary instabilities. They reckoned that the surface-wave and the long- 
wave thermocapillary instabilities reinforce each other, and the disturbance subject 
to these two instabilities takes the form of transverse waves, whereas that subject to 
thermocapillary instability of Pearson type assumes the form of longitudinal rolls. 
Burelbach, Bankoff & Davis ( 1988) considered sufficiently thin horizontal layers, and 
studied the long-wave instabilities by deriving an evolution equation of the Benney 
(1966) type for a two-dimensional layer. The effects of evaporative mass loss, vapour 
recoil, and van der Waals forces are incorporated. Joo, Davis & Bankoff (1991) 
generalized the study to include the effects of the mean flow in the absence of 
the van der Waals forces. They studied the nonlinear development of the flow by 
numerically integrating the long-wave evolution equation. They followed unstable 
evolutions to near rupture when the thermocapillary instability is dominant and 
towards wavebreaking when the surface-wave instability is dominant. For evolutions 
where the thermocapillary instability is significant, substantial local thinning of the 
layer is present and a characteristic double fingering occurs before rupture, leading 
to potential dryout at two points rather than one. 

For a falling film on a heated surface, it is a common experience that dry spots are 
formed and are extended downstream, making the fluid flow around them. This break- 
down of a thin liquid film into longitudinal streams has been a subject of investigation 
for many years. Hartley & Murgatroyd (1964) studied isothermal film flows, and dis- 
cussed conditions under which the dry patch, once formed, will persist or be re-wetted. 
They considered two different models, dry-patch and rivulet models, which are, re- 
spectively, based on a force balance at the upstream stagnation point of a dry patch 
and a minimum total energy balance in a transversely unrestrained stream. Zuber & 
Staub (1966) extended the analysis to heated films, and incorporated thermocapillar- 
ity. Chung & Bankoff (1980) summarized these studies, and further generalized the 
theory to two-component flows to include the effects of non-zero surface shear stress. 

In most of these studies on liquid-film breakdown, the mechanism initiating a dry 
patch is not discussed, and it is still an open question whether the thin-film instabilities 
discussed above are responsible for its initial development. For isothermal film flows, 
only the surface-wave instability is present, and this alone will not cause breakdown, 
since neither substantial local depression of a film (Joo et al. 1991) nor longitudinal 
patterns can develop. Therefore, if the thin film is to rupture and develop rivulets, 
then another mechanism must be present. 

In the present study, we extend the two-dimensional study of Joo et al. (1991) and 
examine nonlinear evolutions of three-dimensional heated layers. We consider flows 
with small thicknesses and moderate heating, and thus focus on instabilities whose 
critical wavelength is much larger than the thickness of the layer. In particular, we 
show that the surface-wave and the long-wave thermocapillary instabilities interact 
nonlinearly with each other and can lead to surface corrugations in the form of 
longitudinal rolls, which would become rivulets after rupture. This constitutes a 
mechanism for the formation of longitudinal dry patches or rivulets. 

We begin in $2 by introducing the evolution equation for a three-dimensional 
heated layer. In $3, we consider heated layers on a horizontal plane, and show the 
nonlinear evolution of three-dimensional heated layers in the absence of the mean 
flow. In $4, we incorporate the effect of mean flow by making the plane vertical. 
The effects of coupled instabilities are shown, including the formation of longitudinal 
rolls. We summarize the results in $5. 
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2. Long-wave theory 
A Newtonian liquid of constant density p and viscosity p is draining down a heated 

incline due to gravity. The layer is bounded above by the interface with a passive 
gas of ambient temperature T,. The bottom plane, inclined at an angle f l  with the 
horizontal, is kept at a constant temperature TH.  

The flow rate is controlled by changing the mean layer thickness do and the angle 
f l .  The maximum velocity occurs at the interface, and for an undisturbed layer 
it is gdisin[j/(2v), where g is the gravitational acceleration and v = p/p .  The 
Reynolds number R based on twice the surface velocity thus becomes G sin /3, where 
the parameter 

is a measure of the layer thickness. 
The temperature TF at the interface is determined by convective heat losses to the 

ambient gas, and thus varies with the interfacial motion. The surface tension depends 
on temperature, and induces surface shear stresses; thermocapillarity is present. We 
assume that the surface tension o decreases linearly with the temperature: 

CJ = C J ~  - Y (TF  - Tx), (2.2) 

where 4, is the surface tension at the ambient temperature T,. The constant y 
(= -do/dT) is positive for most common fluids, and measures the sensitivity of 
surface tension to temperature variations. 

The reference surface tension cr, can be parameterized as 

The intensity of heating AT (z TH - T,) affects the flow only through thermocapil- 
larity (no buoyancy effects), and is measured by the Marangoni number, 

where K is the thermal diffusivity of the liquid layer. The heat transfer coefficient 
h, between the liquid layer and the ambient gas is non-dimensionalized as the Biot 
number, 

d h  B i =  OC 
k ’  

The instabilities present, associated with the deformation of the interface, are long 
waves.? The characteristic length 1 in the streamwise or spanwise direction is much 
larger than the film thickness (c = do/ lGl) .  Therefore, the flow development can be 
described by the long-wave asymptotics of Benney type, which reduce the full system 
of the Navier-Stokes and the energy equations with appropriate boundary conditions 
to a single evolution equation. For a detailed derivation of the evolution equation for 
a two-dimensional layer, readers may refer to the work of Joo et al. (1991). 

t As reported by Goussis & Kelly (1990), the thermocapillary instability of Pearson type requires 
sufficiently large intensity of heating, M / B i  > 16.037, and film thickness, G+ 1. We consider flows 
with moderate heating ( M / B i  < 16.037) and small thickness (G = 0(1)), so that the Pearson-type 
instability does not exist. 
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In a non-dimensional Cartesian coordinate system, the evolution equation for a 

h, + Gh2h, sinp + e [&G2 ( h 6 h X ) %  sin2 p 
2 

+V*{'p" (A) 1 + Bih --Gh3cosP 3 V h +  SV-(h3VV2h)] + O ( c 2 ) = 0 ,  (2.6) 

where h(x,y,t) is the local layer thickness scaled by do, x and y are, respectively, 
streamwise and spanwise coordinates in units of do/c, and time t is scaled by pd$ / (ep ) .  
Here, V s (dx ,  dy ) ,  the Prandtl number 

(2.7) p = -  
K )  

and the surface-tension parameter s is usually very large, and is rescaled to S = e2s. 
The second term in (2.6) describes the nonlinear-wave propagation. The third and 

fourth terms are responsible for the surface-wave and the thermocapillary instabilities, 
respectively. The fifth and sixth terms describe the stabilizing hydrostatic and capillary 
effects. The equation is highly nonlinear, and shows that the flow development is very 
sensitive to the local layer thickness. 

The evolution equation (2.6) for an isothermal layer (A4 = 0) includes that obtained 
by Benney (1966), Krantz & Goren (1971), and Atherton & Homsy (1976) for two- 
dimensional layers (a/ay = 0) and Roskes (1970) and Krishna & Lin (1977) for 
three-dimensional layers. If we further set p = 0 (no mean flow) and make G 
negative, it describes Rayleigh-Taylor instability in thin viscous films with small 
Bond number (Yiantsios & Higgins 1989). If p = 0 and Bi -+ 0, it describes the pure 
thermocapillary instability discussed by Davis (1983). 

The linear stability analysis for a uniform basic state h = 1 is performed by 
considering an infinitesimal harmonic disturbance to the uniform layer : 

7 (2.8) 

V 

h = 1 + Aei(k'x-r') 

where 0 < A a l ,  the wavenumber vector k = k(cosO,sinO), and complex frequency 
r = rR + ir, .  Here, 0 is an oblique angle, which is zero for two-dimensional 
(transverse) waves and 7c/2 for purely longitudinal modes. By substituting (2.8) into 
(2.6) and linearizing in A,  one obtains the linearized phase speed 

rR = Gsinp (2.9) 
and the linear growth rate 

- iGcosp - Sk2 
BiM 

P(l  + Bi)2 
&G2 cos2 0 sin2 p + 

The linear theory shows that the thermocapillarity ( M  # 0) does not affect the phase 
speed and that the two-dimensional waves are the preferred mode as in the isothermal 
layers. In $4, however, it will be shown that nonlinear modal interactions can lead to 
strikingly different conclusions. 

Equation (2.10) clearly shows the destabilizing effects of mean flow and thermocap- 
illarity and the stabilizing effects of hydrostatic pressure and mean surface tension. 
The surface-tension term has an extra factor k2, and so provides the cutoff wavenum- 
ber k,; disturbances with k > k,  are suppressed by capillary forces. Figure 1 shows 
a linear stability diagram in an ( M ,  G)-plane. The stable region exists due to hydro- 
static effects. Therefore, as noted by Kelly et al. (1986), a stability window exists 
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FIGURE 1. Linear stability diagram for heated inclined films, as given by Kelly et al. (1986). 

S:  stable; U: unstable. 

for non-vertical layers ( p  # n/2),  which can be realized by keeping the intensity of 
heating M at a value smaller than and varying the layer thickness G. The window 
disappears for sufficiently intense heating, M '> Mc. 

The nature of the instability can be analysed by introducing the absolute/convective 
instability concepts, summarized by Huerre & Monkewitz (1990). In convectively un- 
stable flows, the growing disturbance wave moves away from its source, whereas 
in absolutely unstable flows, the instability contaminates the entire flow field. In 
isothermal film flows with small to moderate Reynolds numbers and physically 
realizable surface tensions S > S,, the instability is convective. Here S, is a criti- 
cal value which usually is much smaller than the typical S for film flows. In the 
linear theory one can use the Gaster (1962) transformation to relate spatial and 
temporal growth. For a given forcing frequency one can examine temporal insta- 
bility and access each wavenumber separately by examining the equivalent spatial 
growth of a disturbance. A detailed description of concepts and derivations is 
given by Huerre & Monkewitz (1990) or, for film flows, by Joo & Davis (1992). 
Liu, Paul & Gollub (1993) have shown experimently that isothermal film flows are 
convectively unstable. When a film flow is non-isothermal, there is no experimen- 
tal or theoretical information on the absolute/convective nature of the flow. In 
the present work we examine the temporal response and find the appearance of 
longitudinal structures which would seem to be properly described by a temporal 
theory. 

3. Thermocapillary instability 
We now integrate (2.6) numerically and study the nonlinear evolution of unstable 

layers. We first consider flows on a horizontal heated layer ( p  = O), and show the 
effects of the thermocapillary instability in the presence of hydrostatic and capillary 
forces. The effects of mean flow ( p  # 0) and the resulting coupled instabilities will be 
discussed in the following section. 

The numerical scheme is a straightforward extension to three-dimensional layers 
of that used by Joo et a/. (1991). The Hamming modified predictor-corrector method 
is used for temporal integration, with a Fourier spectral method for the spatial 
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derivatives. The computational domain 0 < x < 27~/k1  and 0 < x < 2n/kz  is one 
period of the initial disturbance 

h(x,  y, 0) = 1 - 61 cos ( k l x )  - 62 cos ( k z y ) ,  (3.1) 
where 61 = d2 = 0.1, and kl  and k2 are, respectively, the streamwise and the 
spanwise wavenumbers. In all of the cases below, the parameter values are taken for 
illustration purposes only, and do not refer to any particular fluid system. In all of 
the figures shown, the x ,  y coordinates are scaled to make the large-aspect-ratio flow 
of comparable order in all directions. 

Figure 2 shows the evolution of a horizontal layer when G = 1, S = 1, Bi = 1, 
BiMIP  = 5, and kl  = k2 = 0.5. The wavenumbers, which correspond to approx- 
imately half of those for the maxinum linear growth rate in each direction, are 
appropriately chosen to show interesting secondary flow developments. The layer is 
unstable due to thermocapillarity. Figure 2 ( a )  illustrates one period (both in x and y )  
of the initial disturbance (3.1). At the centre is the trough, which become shallower 
as the instability develops. The crests at four corners will increase in thickness. For 
a horizontal layer, there is no preferred direction. The thinning of the trough is 
accompanied by displacement in all directions of the fluid beneath the trough, which, 
in turn, induces higher lubrication pressure beneath the trough (see Joo et al. 1991). 
When the interface gets close to the bottom plate, this large pressure flattens the 
trough. Figure 2(b) shows one such state at t = 60. The trough has thinned to 
approximately 50% of the mean thickness, and the crest has grown to almost 145%. 
The trough stops thinning, and becomes blunt, and when the region near the edge 
of the flattened trough thins due to the thermocapillarity, a three-dimensional crater 
appears, surrounded by an axisymmetric finger. The centre of the flattened trough 
(the initial trough) continues to experience high pressure and eventually the interface 
bulges upward. Figure 2(c) shows the free-surface configuration at t = 100. The crests 
have continuously grown to 182% of the mean thickness, whereas the trough has 
grown upward to become a concave dome-shaped structure. The annular region near 
the edge of the dome has thinned to about 25% of the mean thickness. The pattern 
of the free surface for this state is well illustrated in Figure 2(d) ,  which shows the 
contours of constant thickness. 

After the layer ruptures, it is expected that the bulge at the centre would be 
isolated from the bulk film and would undergo secondary developments. The present 
calculation cannot describe the flow at or beyond rupture. Near rupture, the inertial 
and convective effects, as well as the long-range molecular forces, can be important 
(Burelbach et al. 1988), and so the evolution equation (2.6) ceases to model the flow 
adequately. 

In figure 2, an axisymmetric evolution occurred because the wavenumbers kl and k2 
were equal. As discussed by Joo et al. (1991), the flow development, including the local 
thinning rate and the local thickness for the fingering, is very sensitive to the initial 
conditions. In three-dimensional layers, the two waves, characterized initially by kl 

and k2, interact nonlinearly as they grow, so that different patterns result depending 
on the combination of the wavenumbers. Obviously, if one of the wavenumbers, say 
k2,  is too large, then the wave in the y -  or spanwise direction disappears and a purely 
two-dimensional flow will development. 

Figure 3 shows the evolution of the same layer as in figure 2, except that now 
k2 = 2kl = 1. It shows the free-surface configuration at t = 92.5. On the crests, the 
local layer thickness is approximately 161% of the mean thickness, and the region 
around the bulge at the centre is near rupture. According to linear theory (2.10), 
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FIGURE 2. Nonlinear evolution of a heated horizontal layer when G = 1 ,  S = 1, Bi = 1, B i M / P  = 5 
and k ,  = kz  = 0.5. Free-surface configuration at  (a)  t = 0; ( b )  t = 60; (c) t = 100. And (d) contours 
of constant thickness a t  t = 100. 
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FIGURE 3. Nonlinear evolution of a heated horizontal layer when G = 1, S = 1, Bi = 1, 
BiMIP = 5, k l  = 0.5 and kZ = 1. Free-surface configuration at t = 92.5. 

the wavenumber k2 = 1 provides faster growth than k2 = 0.5 of figure 2, and so the 
rupture time is now smaller in the nonlinear evolution. Near the tip of the bulge 
at the centre, the contours are ellipses elongated in the x-direction, compared to the 
circles in figure 2. 

Thin films on a heated horizontal plate can become unstable due to the thermocap- 
illarity. When the instability of the Pearson type is absent, an increase in film thickness 
enhances the hydrostatic stabilization. Therefore, the film has to be thin enough for 
the instability to occur. When the instability can occur, sufficiently long waves grow 
and significant local thinning results (in contrast to the isothermal surface-wave in- 
stability). After sufficient thinning, the trough flattens due to the lubrication effects, 
and eventually bulges upward due to the induced lubrication pressure. The pattern 
development thus depends strongly on the initial conditions. As discussed by Joo 
et al. (1991) for a two-dimensional heated layer, there is no saturation to a steady 
state; the local thinning persists until the film ruptures. 

4. Coupled instabilities 
The effects of mean flow and the surface-wave instability can be incorporated by 

tilting the bottom plate to a desired angle ( p  # 0). The presence of the surface-wave 
instability depends on the film thickness (or G) and the inclination angle p. Here, 
we present, as an example, the results for a vertical layer ( p  = 71/2), where the 
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surface-wave instability is always present. Other cases indicate that the qualitative 
behaviour does not change substantially as the angle is decreased. 

4.1. Truncated-nonlinear analysis 
We first study the truncated-nonlinear behaviour of unstable layers by analysing a 
dynamical system derived from the evolution equation (2.6). The local layer thickness 
h is approximated by a finite Fourier series 

M N  

m=-A4 n=-n! 

Here, Am = 1 from conservation of mass, and A(-mlT, = Ahn, where c denotes a 
complex conjugate. In the spanwise direction symmetry is always kept, so that 

By substituting (4.1) into the evolution equation and manipulating further, we 
A,(-,) = A,,,,. 

obtain the following dynamical system for M = N = 2 :  

(4.2) 

= 

= 

~ 1 ~ 1 0  +a2 ( 1 ~ 1 0  l 2  + 2 ~ : , )  A ~ o  + a3AiOA20 + a4AolAl1, 

bl&l + h2 ( 2  \A10 l 2  +Ail)  h l  + h3AOlAO2 + h4 (A:"All + A l d f i )  3 A01 

A 2 0  = C I A 2 0  + c*A;O, 

A02  = dlA"2 + d?A&, 

All  = elAll + ezA10'401, 

where the coefficients are listed in the Appendix. 

4.2. Nonlinear saturation 
In contrast to the horizontal layer with pure thermocapillary instability, there can be 
a nonlinear saturation of an initial unstable wave into a two-dimensional permanent 
wave. This permanent wave propagates at a constant nonlinear phase speed 

c = G ( l  + H ) ,  (4.3) 

where the nonlinear contribution H is determined below. In the above truncated 
system, the permanent wave is represented by 

ii(x')= 1 + 2 ~ A , / c o s ( k ~ x ' ) + 2 / A ~ ( c o s ( 2 k ~ x ' + ~ ) ,  (4.4) 

where x' = x - ct and 4 is a constant. The values for 1 Al 1, I A2 1, c, a, and 4 are 
obtained from the system (4.2) with ikl I = 1 k2 I = A01 = A02 = All = 0. For example, 
we obtain, for the amplitude of the first mode, 

where the subscripts r and i denote real and imaginary parts, respectively. A detailed 
procedure for obtaining the equilibrated states for an isothermal layer is given by 
Gjevik (1970). If we neglect the nonlinear part SI of the phase speed, set M = 0, and 
take only purely two-dimensional modes, equation (4.5) reduces to that obtained by 
Gjevik (1970) for a two-dimensional isothermal layer (see Lin 1983). 

The condition for the nonlinear saturation (supercritical bifurcation) is obtained by 
requiring \ A l  1 2 >  0, which gives the upper half of the wavenumbers unstable (closer 
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FIGURE 4. Nonlinear saturation of two-dimensional waves. Stability boundary (top curve) based on 
the linear theory of Yih (1963), and the bifurcation boundary (lower curve) based on the weakly 
nonlinear theory of Gjevik (1970). 

to the cutoff value), as shown in figure 4. Longer disturbances do not satisfy this 
condition, and so the saturation does not occur (subcritical bifurcation) according to 
the truncated system (4.2). 

Similar analysis can be performed in the search for permanent longitudinal rolls 
(8, = 0). In (4.2), if we set kol = ko2 = 0 with the other modes set to zero, we obtain 
bldl/(b3d2-b2dl) 3 0 as the condition for saturation. This condition predicts a narrow 
band of spanwise wavenumber k2 for some particular combinations of parameters. 
This band corresponds to wavenumbers much smaller than k2c, in a region where 
the truncated system (4.2) is not a good approximation. Numerical verification with 
sixteen modes (N = 6) shows that the saturation to longitudinal rolls does not occur in 
this band (subcritical bifurcation). It thus appears that there is no saturation toward 
purely longitudinal rolls, which is also consistent with the fully nonlinear computation 
by Joo et al. (1991) for a two-dimensional pure thermocapillary instability and that 
in the previous section for a three-dimensional film. 

4.3. Three-dimensional instability 
Joo & Davis (1992) have shown that the two-dimensional permanent waves in 
isothermal layers are unstable to sufficiently long spanwise disturbances. This three- 
dimensional instability is seen by superposing an infinitesimal mixed-mode disturbance 
on the two-dimensional permanent wave: 

h = h(x') + 6 [H(x')eik2y+ct + c.c] , (4-6) 

where g is now the growth rate of the three-dimensional modes. When (4.6) is 
substituted into the evolution equation (2.6) and the resulting equation is linearized 
in 6, an eigenvalue problem with periodic coefficients results. The growth rate g then 
is obtained by using Floquet analysis. 

An analogous analysis can be performed via the truncated system (4.2). If we write 
H in a finite Fourier series 

2 

n=-2 
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we notice that 

Aol = Doe"' and A l l  = DIe-lkl'' e Of (4.8) 
while the D2 (or mode is decoupled. Three real equations are then obtained 
from the truncated system (4.2), and the growth rate (T is obtained by solving the 
characteristic equation 

1 e2,.(o - el,) + 2k:G2x 
(o  - + kiG2r2  

o = b, + 2  ( A ,  (4.9) 

For isothermal layers, the coefficients b, are negative, so that purely spanwise modes 
would decay. However, the nonlinear interaction with the mixed mode transfers 
energy into the spanwise modes, in which case the numerator of the last term in (4.9) 
becomes negative. For layers with thermocapillarity, the coefficients b, are positive 
for sufficiently small kz ,  so that the spanwise modes would grow even in the absence 
of the two-dimensional wave. The three-dimensional instability will reinforce this 
thermocapillary instability. 

Figure 5 shows the growth rate of a two-dimensional permanent wave subject 
to three-dimensional disturbances when G = 5,  B iMIP  = 5,  Bi = 0.1, and T = 
SG-''' = 1. As a reference, the linear growth rate of purely spanwise disturbances 
is also plotted. The two cases shown, kl = 1.9 and k l  = 2.08, are sufficiently close 
to the cutoff value kl, = 2.0895 for the truncated system to be an appropriate 
approximation. The case for k ,  = 1.9 clearly shows the additional effect of the three- 
dimensional instability over the spanwise thermocapillary instability. The growth 
rate is substantially increased, and the cutoff spanwise wavenumber for instability is 
also larger. The wavenumber k l  = 2.08 is very close to the cutoff value. The two- 
dimensional permanent wave is virtually monochromatic and its amplitude is very 
small. The effect of the three-dimensional instability thus is less pronounced. Near 
k2 = 0 the growth rate is higher than the corresponding purely spanwise mode due to 
the three-dimensional instability. The capillary stabilization of the three-dimensional 
mode occurs at a smaller spanwise wavenumber than that of the purely longitudinal 
mode, so that the cutoff value for the overall instability is decreased slightly due to 
the three-dimensional instability. 

The nonlinear behaviour of a heated draining film predicted by a truncated system 
exhibits interesting differences from, as well as similarities to, that of an isother- 
mal layer. As in an isothermal layer, there is a tendency toward a permanent 
two-dimensional wave. This two-dimensional wave is unstable to three-dimensional 
disturbances due to a three-dimensional instability, which also exists in isothermal 
layers, and the thermocapillary instability. Owing to the additional effects of the 
thermocapillarity, the three-dimensional modes would grow more rapidly than in 
an isothermal layer. There is no nonlinear saturation resulting from the balance 
between the destabilizing thermocapillarity and the stabilizing mean surface tension. 
The spanwise mode thus will continue to grow, while the streamwise modes tend to 
saturate. It is then expected that a longitudinal pattern would develop as the layer 
drains down further. Again, the longitudinal rolls will not saturate but presumably 
grow until the film ruptures and dry patches form. In order for the thermocapillarity 
to sustain the local thinning of the longitudinal rolls, the spanwise wavenumber has 
to be sufficiently small, as shown also in figure 5. This provides the ranges for the 
resultant size (width) of the rivulets. The spanwise wavenumber that corresponds 
to the maximum growth rate may give the approximate size o f  the rivulets. The 
exact scale of  the rivulets or the dry patches for a particular choice of parameters, 
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FIGURE 5. Three-dimensional instability of heated draining films when G = 5, B i M / P  = 5,  Bi = 0.1 
and T = SG-1/3 = 1. The broken line shows the corresponding growth rate for purely spanwise 
disturbances. 

however, should be determined by fully nonlinear analysis of the original coupled 
system. Contrary to those in horizontal layers, shown in the previous section, the 
rupture spots or the dry patches will be aligned with the flow direction, presumably 
resulting in an array of rivulets. 

The truncated-nonlinear analysis thus shows that the thermocapillarity can trigger 
spontaneous formation of rivulets in thin draining films. Owing to the interaction 
with the mean flow, surface waves in a thin film tend to saturate to form nonlinear 
transverse waves, which are in turn unstable to three-dimensional disturbances. For 
isothermal films the growth of the three-dimensional modes is bounded, and peri- 
odic or quasi-periodic waves result; films stay continuous. In the presence of the 
thermocapillarity, however, there is an unbounded growth in the three-dimensional 
modes. Cross-stream the balancing forces are those due to the thermocapillarity, 
surface tension, and hydrostatic pressure (for a non-vertical film). As also shown 
by Krishnamoorthy, Ramaswamy & Joo (1995) via a series of full-scale numerical 
integration of the original fully coupled system, this combination does not lead to 
nonlinear saturation; all thin films subject to purely thermocapillary instability of 
the interfacial mode rupture. The wave amplitude in the spanwise direction thus 
continues to grow, while that in the streamwise direction tends to stay bounded. 
More and more energy is brought into the spanwise depression, and the film would 
eventually rupture to form longitudinal dry patches and rivulets. An extensive non- 
linear numerical study is required to obtain the range of parameters over which the 
rivulet formation occurs, and will be a subject of subsequent reports. In what follows, 
we present a few generic cases that show the evolution toward rivulets by numerically 
integrating the full evolution equation. 
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4.4. Spectral computation 
We study the nonlinear flow developments by integrating the evolution equation (2.6) 
using the Fourier-spectral method explained above. 

In figure 6, the evolution of a vertical layer is shown when G = 1, S = 1, Bi = 1, 
B i M / P  = 5. The parameters chosen are identical to those in figures 2 and 3 except 
that now = n/2.  The wavenumbers of the initial disturbance k l  = kZ  = 0.5 are 
the same as in figure 2, so figure 2(u) again shows the initial profile of the free 
surface. As the liquid flows downstream, the disturbance grows in time due to 
the surface-wave and thermocapillary instabilities. In the initial stages, the surface- 
wave instability appears to dominate, and the flow development is similar to that 
of isothermal layers. Figure 6 ( a )  shows the state at t = 15. The local phase speed 
is proportional to the square of the local film thickness according the evolution 
equation (2.6), so that the crests travel faster than the troughs. If the layer were 
isothermal and thus the thermocapillary instability were absent, the surface wave 
would evolve without substantial local thinning near the trough (Joo et ul. 1991). In 
the presence of the thermocapillary instability, however, the local thinning persists 
until the layer ruptures. Figure 6 ( h )  shows the free-surface configuration at t = 30. 
The thermocapillary instability is important, and begins to dictate the growth of the 
three-dimensional modes. The two-dimensional modes (transverse waves) are affected 
by the mean flow, which seems to neutralize the local thinning of the thermocapillary 
instability. This becomes more obvious as the flow develops further, as shown in 
figure 6(c)  for f = 60. The growth of three-dimensional modes causes significant 
reduction of the local film thickness along the centreline parallel along the flow 
direction. The fluid is continuously displaced laterally from this centreline to the 
thicker region, further preventing the growth of the streamwise structure except near 
the centreline. Although three-dimensional development near the centreline is present, 
the overall pattern clearly shows the development of longitudinal structures. There 
is a trough of thickness of approximately 50% of the mean film thickness along 
the centreline, and along the edges are the crests. When the layer is allowed to 
evolve further, lubrication pressure creates the characteristic fingering, as shown in 
figure 6(4 .  The tips of the fingers (the two new troughs) have thinned to about 20% 
of the mean thickness. After these thin further and rupture, we expect to observe 
spatially periodic rivulets separated by dry regions which run parallel to the flow 
direction. 

This rivulet formation has two very important implications. Firstly, it explains 
for the first time a possible mechanism for the creation of dry patches and rivulets 
from continuous films. Although there have been countless studies on rivulets, an 
understanding of the evolution toward rivulet formation has been lacking. The present 
mechanism depends on coupled instabilities, and thus does not apply to isothermal 
layers. Secondly, neither of the two instabilities by itself has tendency to develop 
longitudinal patterns. It is only when the two interact properly that the longitudinal 
structures result. If the surface wave is dominant, the nonlinear flow developments will 
be similar to those for isothermal layers, which exhibit aperiodic three-dimensional 
waves propagating downstream. On the other hand, if the thermocapillary instability 
dominates, the evolutions will not display a preferred direction. A thorough numerical 
search is required to identify the parameteric regions for the formation of Iongitudinal 
patterns. As in many other cases related to pattern selection, the linear theory is 
unable to predict these formations. 

Many previous studies of rivulets focus on fully developed states, and have pro- 
posed models for their size and stability. The present approach does not yet allow 
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FIGURE 7. Nonlinear evolution of a heated vertical layer when G = 1, S = 1, Bi = 1, B i M / P  = 5, 
k l  = 0.5 and k z  = 1. Free-surface configuration at t = 60. 

us to analyse these final states, since the computation must be terminated before the 
layer rupture\ 

Figure 7 shows another evolution toward rivulets with the spanwise wavenumber 
k2 = 1; all other parameters are identical to those in figure 6. The growth of spanwise 
modes due to the thermocapillary instability is faster than that in the previous case. 
The formation of a longitudinal pattern is already seen at t = 30. The troughs and 
crests are, respectively, about 57% and 131% of the mean film thickness. Fingering 
does not occur until the layer almost ruptures, consistent with the two-dimensional 
evolutions reported by Joo er al. (1991). We show the free-surface configuration 
at t = 60. The thinnest region is approximately 9% of the mean thickness, and the 
fingering is about to occur. Compared to the previous case, local thinning is enhanced, 
resulting in a smaller rupture time. If fingering occurs, it would be at a later stage of 
the evolution, so that the bulge along the centre accompanying the fingering would 
be much smaller than that in the previous case of k2 = 0.5. The configuration of 
rivulets thus is different than in the previous evolution. 

In figure 8, the spanwise wavenumber is decreased to 0.25, with the other parameters 
unchanged. Local thinning rates are smaller than those in the previous cases of shorter 
spanwise wavelengths, and so the rupture time is increased. The fingering occurs at 
a much earlier stage of the evolution, so that the rolls along the centreline are much 
larger. 
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FIGURE 8. Nonlinear evolution of a heated vertical layer when G = 1, S = 1, Bi = 1, BiM/P = 5, 
k l  = 0.5 and k2 = 0.25. Free-surface configuration at t = 175. 

Thus, when the heated layer is tilted, and the thermocapillary instability is coupled 
with the surface-wave instability, longitudinal rolls can evolve through nonlinear 
interactions of the two different modes. As the flow develops further and the layer 
ruptures, rivulets can be formed. The initial shape and size of these rivulets depend 
strongly on the disturbance wavenumbers, as well as other parameters. 

5. Concluding remarks 
The nonlinear behaviour of thin liquid layers is studied by numerically integrating 

a long-wave evolution equation of Benney type which includes the effects of viscosity, 
gravity, capillarity, thermocapillarity, and inertia. 

The horizontal layers have no surface-wave instability, and evolve from the effects 
of small disturbances with no preferred direction parallel to the wall. If, say, two- 
dimensional disturbances are imposed, an initial interfacial depression will deepen, 
flatten due to lubrication pressures (Joo et al. 1991), and then evolve into a sym- 
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metric pair of fingers that approach the wall. If the imposed disturbances are, say, 
axisymmetric, the fingers that develop constitute an axisymmetric crater that further 
develops. In any case the rupture should not occur at a single point but an a ‘ring’ 
that isolates an island of fluid from the remainder of the film. The evolution depends 
on the initial disturbance and the size of the periodic box for numerical computation. 

Inclined isothermal layers become two-dimensional, as determined by linear the- 
ory, but develop complicated three-dimensional wave systems when nonlinearity is 
considered. Two-dimensional permanent waves can exist, but are always unstable to 
three-dimensional perturbations for vertical layers (JOO & Davis 1992). 

The inclined heated layers (coupled instabilities) evolve in marked contrast with 
the linear theory. For the first time it has been shown that the two instability modes 
can interact nonlinearly and give rise to longitudinal patterns alien to each of the 
two modes alone. In effect, the mean flow hinders the growth of the two-dimensional 
modes, and slows the local thinning. In the spanwise direction, the mean flow is 
absent, and the thinning due to the thermocapillary instability is effective. The growth 
of spanwise-periodic modes generates longitudinal rolls, which will evolve toward 
rivulets after the layer ruptures. Again, as the spanwise-periodic mode grows, the 
flattening and the fingering occur before rupture, owing to lubrication-pressure effects. 
Therefore, in one spanwise period, two rivulets can result, which are, for horizontal 
layers, analogous to an island surrounded by bulk fluid. The shape and size of the 
rivulets are again sensitive to the wavenumbers of the initial disturbance. 

The longitudinal patterns mentioned above can develop only when the two insta- 
bility modes have moderate intensity and are appropriately balanced. If the flow 
rate is too large compared to the intensity of heating, the surface-wave instability 
will dominate. If the heating is too strong, the thermocapillary instability dominates. 
When both instability modes are too strong and thus the flow is highly unstable, 
the local thinning due to the thermocapillary instability and the wave steepening due 
to the surface-wave instability reinforce each other, resulting in large local slope or 
incipient wave breaking. The evolution equation (2.6) then no longer describes the 
flow properly. 

The present numerical experiments were performed in a spatially periodic do- 
main. As initial perturbations, we have used localized bumps or alternatively three- 
dimensionally perturbed oblique waves, but have not encountered drastically different 
behaviours. As discussed by Joo & Davis (1991) for isothermal layers, the subharmon- 
ics of a fundamental disturbance mode are also linearly unstable, and sometimes can 
lead to chaos. If we allow subharmonic disturbances in the spanwise or streamwise 
modes, the evolution of the heated layers may be more complex than that reported 
here. 

The instabilities in a thin draining film occur in the form of free-surface deforma- 
tions. For isothermal films, the primary surface-wave instability can lead to nonlinear 
saturation, resulting in transverse permanent waves. A secondary three-dimensional 
instability tend to transform these waves into three-dimensional aperiodic waves. For 
films with thermocapillary, the transverse saturation exists, but the tendency toward 
three-dimensional patterns is much stronger. Since there is no spanwise saturation, 
the three-dimensional instability coupled with the thermocapillary instability would 
lead to an array of rivulets aligned with the flow. 

The next step, given the mechanism presented, is to quantify the longitudinal 
structures for given liquids, ti l t  angles, and flow and heating rates with the object 
of predicting the scales of the rivulets to be expected. This will be the subject of a 
subsequent communication. 
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We have described a possible theory for the development of longitudinal structure 

for films having small flow rates and small heat fluxes. This theory is a dynamic one 
that shows how longitudinal structure develops from general initial conditions. This 
structure is found to be on a transverse scale comparable to the downstream scale. 
In the case of a channel flow heated from below where there is buoyancy-driven 
convection only, longitudinal structure develops and the flow is attracted to this 
stable equilibrium (see Kelly 1994). In the present case, longitudinal rolls are not an 
equilibrium solution since they develop under the influence of thermocapillary forces. 
Pure thermocapillary instability does not equilibrate but yet the flow is attracted to 
such structure. 

There are no detailed experiments for low flow rates and low heat fluxes with which 
to compare our theory. However, there has been recent work on the direct simulation 
of heated falling films in which no long-wave approximation is utilized. Krishnamoor- 
thy, Ramaswamy & Joo (1996) show that the results obtained in the present work 
are quantitatively correct for small enough G and M. Careful experiments on flow 
patterns or computations for detailed comparisons would be welcome. 

This work was supported by the US Department of Energy, Division of Basic 
Energy Sciences, through Grant no. DE FG02-86ER13641. 

Appendix. Coefficients of equations (4.2) 
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